
Hyperelastic

Andreas Dutzler

May 01, 2024

CONTENTS:

1 Tutorials 3
1.1 Getting Started . 3

2 Spaces 7

3 Frameworks 11

4 Models 17

5 Math 21

6 Lab 35

7 Indices and Tables 45

Python Module Index 47

Index 49

i

ii

Hyperelastic

Constitutive hyperelastic material formulations for https://github.com/adtzlr/felupe .

This package provides the essential building blocks for constitutive hyperelastic material formulations. This includes
material behaviour-independent Spaces and Frameworks as well as material behaviour-dependent Models.

CONTENTS: 1

https://github.com/adtzlr/felupe

Hyperelastic

2 CONTENTS:

CHAPTER

ONE

TUTORIALS

1.1 Getting Started

Spaces are full or partial deformations on which a given material formulation should be projected to, e.g. to the dis-
tortional (part of the deformation) space. Generalized Total-Lagrange Frameworks for isotropic hyperelastic material
formulations based on the invariants of the right Cauchy-Green deformation tensor and the principal stretches enable a
clean coding of isotropic material formulations.

The Math -module provides helpers in reduced vector Voigt storage for symmetric three-dimensional second-order
tensors along with a matrix storage for (at least minor) symmetric three-dimensional fourth-order tensors.

Material model formulations have to be created as classes with methods for the evaluation of the gradient (stress)
and the hessian (elasticity) of the strain energy function. It depends on the Framework which derivatives have to be
defined, e.g. the derivatives w.r.t. the invariants of the right Cauchy-Green deformation tensor or w.r.t. the principal
stretches. An instance of a Framework has to be finalized by the application on a Space.

First, let’s import hyperelastic.

import hyperelastic

1.1.1 Available material formulations

Model Formulation Framework Parameters
Third Order Deformation Invariants 𝐶10, 𝐶01, 𝐶11, 𝐶20, 𝐶30

Torch Autograd Hyperelastic Invariants 𝜓(𝐼1, 𝐼2, 𝐼3)
Ogden Stretches 𝜇, 𝛼

An instance of one of these models is then embedded into the corresponding Framework , which is further applied onto
a Space.

model = hyperelastic.models.invariants.ThirdOrderDeformation(C10=0.5)
framework = hyperelastic.InvariantsFramework(model)
umat = hyperelastic.DistortionalSpace(framework)

Note: Instead of using the implemented models, define your own material model formulation with manual, automatic
or symbolic differentiation with the help of your favourite package, e.g. PyTorch, JAX, Tensorflow, TensorTRAX,
SymPy, etc.

3

https://en.wikipedia.org/wiki/Voigt_notation
https://pytorch.org/
https://jax.readthedocs.io/en/latest/
https://www.tensorflow.org/
https://github.com/adtzlr/tensortrax
https://www.sympy.org/en/index.html

Hyperelastic

1.1.2 Invariant-based material formulations

A minimal template for an invariant-based material formulation applied on the distortional space:

class MyInvariantsModel:
def gradient(self, I1, I2, I3, statevars):

"""The gradient as the partial derivative of the strain energy function w.r.t.
the invariants of the right Cauchy-Green deformation tensor."""

user code
dWdI1 = None
dWdI2 = None
dWdI3 = None

return dWdI1, dWdI2, dWdI3, statevars

def hessian(self, I1, I2, I3, statevars_old):
"""The hessian as the second partial derivatives of the strain energy function
w.r.t. the invariants of the right Cauchy-Green deformation tensor."""

user code
d2WdI1I1 = None
d2WdI2I2 = None
d2WdI3I3 = None
d2WdI1I2 = None
d2WdI2I3 = None
d2WdI1I3 = None

return d2WdI1I1, d2WdI2I2, d2WdI3I3, d2WdI1I2, d2WdI2I3, d2WdI1I3

model = MyInvariantsModel()
framework = hyperelastic.InvariantsFramework(model)
umat = hyperelastic.DistortionalSpace(framework)

1.1.3 Principal stretch-based material formulations

A minimal template for a principal stretch-based material formulation applied on the distortional space:

class MyStretchesModel:
def gradient(self, , statevars):

"""The gradient as the partial derivative of the strain energy function w.r.t.
the principal stretches."""

user code
dWd1, dWd2, dWd3 = 0 *

return [dWd1, dWd2, dWd3], statevars

def hessian(self, , statevars_old):
"""The hessian as the second partial derivatives of the strain energy function
w.r.t. the principal stretches."""

(continues on next page)

4 Chapter 1. Tutorials

Hyperelastic

(continued from previous page)

user code
d2Wd1d1 = None
d2Wd2d2 = None
d2Wd3d3 = None
d2Wd1d2 = None
d2Wd2d3 = None
d2Wd1d3 = None

return d2Wd1d1, d2Wd2d2, d2Wd3d3, d2Wd1d2, d2Wd2d3, d2Wd1d3

model = MyStretchesModel()
framework = hyperelastic.StretchesFramework(model)
umat = hyperelastic.DistortionalSpace(framework)

1.1.4 Lab

In the Lab, Simulations on homogeneous load cases provide a visualization of the material response behaviour.

import numpy as np
import hyperelastic

stretch = np.linspace(0.7, 2.5, 181)
parameters = {"C10": 0.3, "C01": 0.2}

def material(C10, C01):
tod = hyperelastic.models.invariants.ThirdOrderDeformation(C10=C10, C01=C01)
framework = hyperelastic.InvariantsFramework(tod)
return hyperelastic.DeformationSpace(framework)

ux = hyperelastic.lab.Simulation(
loadcase=hyperelastic.lab.Uniaxial(label="uniaxial"),
stretch=np.linspace(0.7, 2.5),
material=material,
labels=parameters.keys(),
parameters=parameters.values(),

)

ps = hyperelastic.lab.Simulation(
loadcase=hyperelastic.lab.Planar(label="planar"),
stretch=np.linspace(1.0, 2.5),
material=material,
labels=parameters.keys(),
parameters=parameters.values(),

)

bx = hyperelastic.lab.Simulation(
loadcase=hyperelastic.lab.Biaxial(label="biaxial"),
stretch=np.linspace(1.0, 1.75),
material=material,
labels=parameters.keys(),

(continues on next page)

1.1. Getting Started 5

Hyperelastic

(continued from previous page)

parameters=parameters.values(),
)

fig, ax = ux.plot_stress_stretch(lw=2)
fig, ax = ps.plot_stress_stretch(ax=ax, lw=2)
fig, ax = bx.plot_stress_stretch(ax=ax, lw=2)

ax.legend()
ax.set_title(rf"Mooney-Rivlin (C10={parameters['C10']}, C01={parameters['C01']})")

6 Chapter 1. Tutorials

CHAPTER

TWO

SPACES

Spaces are full or partial deformations on which a given material formulation may be projected to, e.g. to the distor-
tional (part of the deformation) space.

class hyperelastic.spaces.Deformation(material, parallel=False, finalize=True, force=None, area=0)
The deformation space.

This class takes a Total-Lagrange material formulation and applies it on the deformation space.

𝜓 = 𝜓(𝐶(𝐹)) (2.1)

The gradient of the strain energy function is carried out w.r.t. the Green Lagrange strain tensor. Hence, the
work-conjugate stress tensor here refers to the second Piola-Kirchhoff stress tensor.

𝑆 =
𝜕𝜓

𝜕 1
2𝐶

(2.2)

The hessian of the strain energy function is carried out w.r.t. the Green-Lagrange strain tensor. Hence, the
work-conjugate elasticity tensor here refers to the fourth-order Total-Lagrangian elasticity tensor.

C =
𝜕2𝜓

𝜕 1
2𝐶

1
2𝐶

(2.3)

7

Hyperelastic

Given a Total-Lagrange material formulation, for the variation and linearization of the virtual work of internal
forces, the output quantities have to be transformed: The second Piola-Kirchhoff stress tensor is converted into
the deformation gradient work-conjugate first Piola-Kirchhoff stress tensor, along with its fourth-order elasticity
tensor. Also, the so-called geometric tangent stiffness component (initial stress matrix) is added to the fourth-
order elasticity tensor.

𝛿𝑊𝑖𝑛𝑡 = −
∫︁
𝑉

𝑃 : 𝛿𝐹 𝑑𝑉

∆𝛿𝑊𝑖𝑛𝑡 = −
∫︁
𝑉

𝛿𝐹 : A : ∆𝐹 𝑑𝑉

(2.4)

where
𝑃 = 𝐹𝑆

A𝑖𝐽𝑘𝐿 = 𝐹𝑖𝐼𝐹𝑘𝐾C𝐼𝐽𝐾𝐿 + 𝛿𝑖𝑘𝑆𝐽𝐿
(2.5)

gradient(x)
The gradient as the partial derivative of the strain energy function w.r.t. the deformation gradient.

hessian(x)
The hessian as the second partial derivative of the strain energy function w.r.t. the deformation gradient.

piola(F, S, detF=None, C4=None, invC=None)
Convert the Total-Lagrange stress or elasticity tensor to the chosen configurations for the differential force
and area vectors by applying a Piola-transformation.

class hyperelastic.spaces.Dilatational(material, parallel=False, finalize=True, force=None, area=0)

gradient(x)

hessian(x)

piola(F, S, detF=None, C4=None, invC=None)
Convert the Total-Lagrange stress or elasticity tensor to the chosen configurations for the differential force
and area vectors by applying a Piola-transformation.

class hyperelastic.spaces.Distortional(material, parallel=False, finalize=True, force=None, area=0)
The distortional (part of the deformation) space is a partial deformation with constant volume. For a given
deformation map 𝑥(𝑋) and its deformation gradient 𝐹 , the distortional part of the deformation gradient �̂�
is obtained by a multiplicative (consecutive) split into a volume-changing (dilatational) and a constant-volume
(distortional) part of the deformation gradient. Due to the fact that the dilatational part is proportional to the unit
tensor, the order of these partial deformations is not unique.

𝐹 =
∘
𝐹 �̂� = �̂�

∘
𝐹 (2.6)

This class takes a Total-Lagrange material formulation and applies it only on the distortional space.

𝜓 = 𝜓(�̂�(𝐹)) (2.7)

The distortional (unimodular) part of the right Cauchy-Green deformation tensor is evaluated by the help of its
third invariant (the determinant). The determinant of a distortional (an unimodular) tensor equals to one.

�̂� = 𝐼
−1/3
3 𝐶 (2.8)

The gradient of the strain energy function is carried out w.r.t. the Green Lagrange strain tensor. Hence, the
work-conjugate stress tensor used in this space projection refers to the second Piola-Kirchhoff stress tensor.

𝑆′ =
𝜕𝜓

𝜕 1
2𝐶

(2.9)

8 Chapter 2. Spaces

Hyperelastic

The distortional space projection leads to a physically deviatoric second Piola-Kirchhoff stress tensor, evaluated
by the application of the chain rule.

�̂� =
𝜕𝜓

𝜕 1
2�̂�

(2.10)

The (phyiscally) deviatoric projection is obtained by the partial derivative of the distortional part of the right
Cauchy-Green deformation tensor w.r.t. the right Cauchy-Green deformation tensor.

𝜕�̂�

𝜕𝐶
=
𝜕𝐼

−1/3
3 𝐶

𝜕𝐶
= 𝐼

−1/3
3

(︂
1⊙ 1− 1

3
𝐶 ⊗𝐶−1

)︂
(2.11)

This partial derivative is used to perform the distortional space projection of the second Piola-Kirchhoff stress
tensor. Instead of asserting the determinant-scaling to the fourth-order projection tensor, this factor is combined
with the second Piola-Kirchhoff stress tensor in the distortional space. Hence, the stress tensor in the distortional
space, scaled by 𝐼−1/3

3 , is introduced as a new (frequently re-used) variable, denoted by an overset bar.

𝑆′ = P : �̄�

�̄� = 𝐼
−1/3
3 �̂�

P = 1⊙ 1− 1

3
𝐶−1 ⊗𝐶

(2.12)

The evaluation of the double-dot product for the distortional space projection leads to the mathematical deviator
of the product between the scaled distortional space stress tensor and the right Cauchy-Green deformation tensor,
right multiplied by the inverse of the right Cauchy-Green deformation tensor.

𝑆′ = �̄� − �̄� : 𝐶

3
𝐶−1 = dev(�̄�𝐶)𝐶−1 (2.13)

The hessian of the strain energy function is carried out w.r.t. the Green-Lagrange strain tensor. Hence, the work-
conjugate elasticity tensor used in this space projection refers to the fourth-order Total-Lagrangian elasticity
tensor.

C′ =
𝜕2𝜓

𝜕 1
2𝐶

1
2𝐶

(2.14)

The evaluation of this second partial derivative leads to the elasticity tensor of the distortional space projec-
tion. The remaining determinant scaling terms of the projection tensor are included in the determinant-modified
fourth-order elasticity tensor, denoted with an overset bar.

C′ = P : C̄ : P𝑇 +
2

3

(︂(︀
�̄� : 𝐶

)︀
𝐶−1 ⊙𝐶−1 − �̄� ⊗𝐶−1 −𝐶−1 ⊗ �̄� +

1

3

(︀
�̄� : 𝐶

)︀
𝐶−1 ⊗𝐶−1

)︂
(2.15)

C̄ = 𝐼
−2/3
3 Ĉ (2.16)

For the variation and linearization of the virtual work of internal forces, the output quantities have to be trans-
formed: The second Piola-Kirchhoff stress tensor is converted into the deformation gradient work-conjugate first
Piola-Kirchhoff stress tensor, along with its fourth-order elasticity tensor. Also, the so-called geometric tangent
stiffness component (initial stress matrix) is added to the fourth-order elasticity tensor.

𝛿𝑊𝑖𝑛𝑡 = −
∫︁
𝑉

𝑃 : 𝛿𝐹 𝑑𝑉

∆𝛿𝑊𝑖𝑛𝑡 = −
∫︁
𝑉

𝛿𝐹 : A : ∆𝐹 𝑑𝑉

(2.17)

where
𝑃 = 𝐹𝑆

A𝑖𝐽𝑘𝐿 = 𝐹𝑖𝐼𝐹𝑘𝐾C𝐼𝐽𝐾𝐿 + 𝛿𝑖𝑘𝑆𝐽𝐿
(2.18)

9

Hyperelastic

gradient(x)
The gradient as the partial derivative of the strain energy function w.r.t. the deformation gradient.

hessian(x)
The hessian as the second partial derivative of the strain energy function w.r.t. the deformation gradient.

piola(F, S, detF=None, C4=None, invC=None)
Convert the Total-Lagrange stress or elasticity tensor to the chosen configurations for the differential force
and area vectors by applying a Piola-transformation.

10 Chapter 2. Spaces

CHAPTER

THREE

FRAMEWORKS

The (topologic) deformation of a solid body is given by a displacement field. The deformation gradient, the right
and left Cauchy-Green deformation tensors as well as related strain tensors are displacement- or deformation-derived
kinematic quantities. The kinetics, i.e. the force vector acting on a solid body, is evaluated by the stress tensor and the
appropriate area normal vector. The constitutive material model is formulated within a framework which links work-
conjugate quantities of stress and strain. The stress tensor of the framework has to be transformed to be consistent with
the force and area normal vectors. Here, the first Piola-Kirchhoff stress tensor is used to evaluate the force vector in the
deformed configuration by the area normal vector of the undeformed configuration.

Generalized Total-Lagrange Frameworks for isotropic hyperelastic material formulations based on the invariants of
the right Cauchy-Green deformation tensor and the principal stretches enable a clean coding of isotropic material
formulations.

class hyperelastic.frameworks.GeneralizedInvariants(material, fun, nstatevars=0, parallel=False,
**kwargs)

Generalized-invariants isotropic hyperelastic material formulation based on the principal stretches.

𝜓 = 𝜓 (𝐼1 (𝐸1, 𝐸2, 𝐸3) , 𝐼2 (𝐸1, 𝐸2, 𝐸3) , 𝐼3 (𝐸1, 𝐸2, 𝐸3)) (3.1)

The three principal invariants

𝐽1 = 𝐸1 + 𝐸2 + 𝐸3

𝐽2 = 𝐸1𝐸2 + 𝐸2𝐸3 + 𝐸1𝐸3

𝐽3 = 𝐸1𝐸2𝐸3

(3.2)

are formulated on a one-dimensional strain-stretch relation.
𝐸𝛼 = 𝑓(𝜆𝛼)

𝐸′
𝛼 = 𝑓 ′(𝜆𝛼) =

𝜕𝑓(𝜆𝛼)

𝜕𝜆𝛼

𝐸′′
𝛼 = 𝑓 ′′(𝜆𝛼) =

𝜕2𝑓(𝜆𝛼)

𝜕𝜆𝛼 𝜕𝜆𝛼

(3.3)

11

Hyperelastic

Depending on the strain-stretch relation, the invariants contain deformation- independent values.

𝐽1,0 = 𝐽1(𝐸𝛼(𝜆𝛼 = 1))

𝐽2,0 = 𝐽2(𝐸𝛼(𝜆𝛼 = 1))

𝐽3,0 = 𝐽3(𝐸𝛼(𝜆𝛼 = 1))

(3.4)

The deformation-dependent parts of the invariants are scaled by deformation- independent coefficients of nor-
malization. The deformation-independent parts are re-added after the scaling.

𝐼1 = 𝑐1(𝐽1 − 𝐽1,0) + 𝐽1,0

𝐼2 = 𝑐2(𝐽2 − 𝐽2,0) + 𝐽2,0

𝐼3 = 𝐽3

(3.5)

Note that the scaling is only applied to the first and second invariant, as the third invariant does not contribute to
the strain energy function at the undeformed state.

𝐸0 = 𝐸(𝜆 = 1)

𝐸′
0 = 𝐸′(𝜆 = 1)

𝐸′′
0 = 𝐸′′(𝜆 = 1)

(3.6)

The second partial derivative of the strain w.r.t. the stretch must be provided for a reference strain, e.g. the
Green-Lagrange strain measure (at the undeformed state).

𝐽 ′′
1,0 =

3

2
(𝐸′′

0 + 𝐸′
0)

𝐽 ′′
2,0 =

3

2

(︀
(2𝐸0(𝐸

′′
0 + 𝐸′

0))− 𝐸′2
0

)︀ (3.7)

𝑐1 =
𝐽 ′′
1,0,𝑟𝑒𝑓

𝐽 ′′
1,0

𝑐2 =
𝐽 ′′
2,0,𝑟𝑒𝑓

𝐽 ′′
2,0

(3.8)

The first partial derivatives of the strain energy function w.r.t. the invariants

𝜓,1 =
𝜕𝜓

𝜕𝐼1

𝜓,2 =
𝜕𝜓

𝜕𝐼2

𝜓,3 =
𝜕𝜓

𝜕𝐼3

(3.9)

and the partial derivatives of the invariants w.r.t. the principal stretches are defined. From here on, this is
consistent with any invariant-based hyperelastic material formulation, except for the factors of normalization.

𝜕𝐼1
𝜕𝐸𝛼

= 𝑐1

𝜕𝐼2
𝜕𝐸𝛼

= 𝑐2 (𝐸𝛽 + 𝐸𝛾)

𝜕𝐼3
𝜕𝐸𝛼

= 𝐸𝛽𝐸𝛾

(3.10)

The first partial derivatives of the strain energy density w.r.t. the principal stretches are required for the principal
values of the stress.

𝜕𝜓

𝜕𝜆𝛼
=
𝜕𝜓

𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

+
𝜕𝜓

𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

+
𝜕𝜓

𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

(3.11)

12 Chapter 3. Frameworks

Hyperelastic

Furthermore, the second partial derivatives of the strain energy density w.r.t. the principal stretches, necessary
for the principal components of the elastic tangent moduli, are carried out. This is done in two steps: first, the
second partial derivatives w.r.t. the principal strain components are carried out, followed by the projection to the
derivatives w.r.t. the principal stretches.

𝜕2𝜓

𝜕𝐸𝛼 𝜕𝐸𝛽
=

𝜕2𝜓

𝜕𝐼1 𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼2 𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼3 𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼1 𝜕𝐼2

(︂
𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

+
𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

)︂
+

𝜕2𝜓

𝜕𝐼2 𝜕𝐼3

(︂
𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

)︂
+

𝜕2𝜓

𝜕𝐼1 𝜕𝐼3

(︂
𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

)︂
+
𝜕𝜓

𝜕𝐼1

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

+
𝜕𝜓

𝜕𝐼2

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

+
𝜕𝜓

𝜕𝐼3

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

(3.12)

𝜕2𝜓

𝜕𝜆𝛼 𝜕𝜆𝛽
=
𝜕𝐸𝛼
𝜕𝜆𝛼

𝜕2𝜓

𝜕𝐸𝛼 𝜕𝐸𝛽

𝜕𝐸𝛽
𝜕𝜆𝛽

+

(︂
𝜕𝜓

𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

+
𝜕𝜓

𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

+
𝜕𝜓

𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

)︂
𝜕2𝐸𝛼
𝜕𝜆𝛼𝜕𝜆𝛼

(3.13)

gradient(C, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the right Cauchy-Green deformation
tensor (one half of the second Piola Kirchhoff stress tensor).

hessian(C, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the right Cauchy-Green
deformation tensor (a quarter of the Lagrangian fourth-order elasticity tensor associated to the second Piola-
Kirchhoff stress tensor).

class hyperelastic.frameworks.Invariants(material, nstatevars=0, parallel=False)
The Framework for a Total-Lagrangian invariant-based isotropic hyperelastic material formulation provides the
material behaviour-independent parts for evaluating the second Piola-Kirchhoff stress tensor as well as its asso-
ciated fourth-order elasticity tensor.

The gradient as well as the hessian of the strain energy function are carried out w.r.t. the right Cauchy-Green
deformation tensor. Hence, the work-conjugate stress tensor is one half of the second Piola-Kirchhoff stress
tensor and the fourth-order elasticitiy tensor used here is a quarter of the Total-Lagrangian elasticity tensor.

𝜓(𝐶) = 𝜓(𝐼1(𝐶), 𝐼2(𝐶), 𝐼3(𝐶)) (3.14)

The first and second invariants of the left or right Cauchy-Green deformation tensor are identified as factors of
their characteristic polynomial,

𝐼1 = tr(𝐶)

𝐼2 =
1

2

(︀
tr(𝐶)2 − tr(𝐶2)

)︀
𝐼3 = det(𝐶)

(3.15)

where the Cauchy-Green deformation tensors eliminate the rigid body rotations of the deformation gradient and
serve as a quadratic change-of-length measure of the deformation.

𝐶 = 𝐹 𝑇𝐹

𝑏 = 𝐹𝐹 𝑇
(3.16)

13

Hyperelastic

The first partial derivatives of the strain energy function w.r.t. the invariants

𝜓,1 =
𝜕𝜓

𝜕𝐼1

𝜓,2 =
𝜕𝜓

𝜕𝐼2

𝜓,3 =
𝜕𝜓

𝜕𝐼3

(3.17)

and the partial derivatives of the invariants w.r.t. the right Cauchy-Green deformation tensor are defined.

𝜕𝐼1
𝜕𝐶

= 𝐼

𝜕𝐼2
𝜕𝐶

= (𝐼1𝐼 −𝐶)

𝜕𝐼3
𝜕𝐶

= 𝐼3𝐶
−1

(3.18)

The second Piola-Kirchhoff stress tensor is formulated by the application of the chain rule.

𝜕𝜓

𝜕𝐶
=
𝜕𝜓

𝜕𝐼1

𝜕𝐼1
𝜕𝐶

+
𝜕𝜓

𝜕𝐼2

𝜕𝐼2
𝜕𝐶

+
𝜕𝜓

𝜕𝐼3

𝜕𝐼3
𝜕𝐶

(3.19)

Furthermore, the second partial derivatives of the elasticity tensor are carried out.

𝜕2𝜓

𝜕𝐶 𝜕𝐶
=

𝜕2𝜓

𝜕𝐼1 𝜕𝐼1

(︂
𝜕𝐼1
𝜕𝐶

⊗ 𝜕𝐼1
𝜕𝐶

)︂
+

𝜕2𝜓

𝜕𝐼2 𝜕𝐼2

(︂
𝜕𝐼2
𝜕𝐶

⊗ 𝜕𝐼2
𝜕𝐶

)︂
+

𝜕2𝜓

𝜕𝐼3 𝜕𝐼3

(︂
𝜕𝐼3
𝜕𝐶

⊗ 𝜕𝐼3
𝜕𝐶

)︂
+

𝜕2𝜓

𝜕𝐼1 𝜕𝐼2

(︂
𝜕𝐼1
𝜕𝐶

⊗ 𝜕𝐼2
𝜕𝐶

+
𝜕𝐼2
𝜕𝐶

⊗ 𝜕𝐼1
𝜕𝐶

)︂
+

𝜕2𝜓

𝜕𝐼2 𝜕𝐼3

(︂
𝜕𝐼2
𝜕𝐶

⊗ 𝜕𝐼3
𝜕𝐶

+
𝜕𝐼3
𝜕𝐶

⊗ 𝜕𝐼2
𝜕𝐶

)︂
+

𝜕2𝜓

𝜕𝐼1 𝜕𝐼3

(︂
𝜕𝐼1
𝜕𝐶

⊗ 𝜕𝐼3
𝜕𝐶

+
𝜕𝐼3
𝜕𝐶

⊗ 𝜕𝐼1
𝜕𝐶

)︂
+
𝜕𝜓

𝜕𝐼1

𝜕2𝐼1
𝜕𝐶 𝜕𝐶

+
𝜕𝜓

𝜕𝐼2

𝜕2𝐼2
𝜕𝐶 𝜕𝐶

+
𝜕𝜓

𝜕𝐼3

𝜕2𝐼3
𝜕𝐶 𝜕𝐶

(3.20)

The only non material behaviour-related terms which are not already defined during stress evaluation are the
second partial derivatives of the invariants w.r.t. the right Cauchy-Green deformation tensor.

𝜕2𝐼1
𝜕𝐶 𝜕𝐶

= ⊬

𝜕2𝐼2
𝜕𝐶 𝜕𝐶

= 𝐼 ⊗ 𝐼 − 𝐼 ⊙ 𝐼

𝜕2𝐼3
𝜕𝐶 𝜕𝐶

= 𝐼3
(︀
𝐶−1 ⊗𝐶−1 −𝐶−1 ⊙𝐶−1

)︀
(3.21)

gradient(C, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the right Cauchy-Green deformation
tensor (one half of the second Piola Kirchhoff stress tensor).

14 Chapter 3. Frameworks

Hyperelastic

hessian(C, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the right Cauchy-Green
deformation tensor (a quarter of the Lagrangian fourth-order elasticity tensor associated to the second Piola-
Kirchhoff stress tensor).

class hyperelastic.frameworks.Stretches(material, nstatevars=0, parallel=False)
The Framework for a Total-Lagrangian stretch-based isotropic hyperelastic material formulation provides the ma-
terial behaviour-independent parts for evaluating the second Piola-Kirchhoff stress tensor as well as its associated
fourth-order elasticity tensor.

The gradient as well as the hessian of the strain energy function are carried out w.r.t. the right Cauchy-Green
deformation tensor. Hence, the work-conjugate stress tensor is one half of the second Piola-Kirchhoff stress
tensor and the fourth-order elasticitiy tensor used here is a quarter of the Total-Lagrangian elasticity tensor.

𝜓(𝐶) = 𝜓(𝜆𝛼(𝐶)) (3.22)

The principal stretches (the square roots of the eigenvalues) of the left or right Cauchy-Green deformation tensor
are obtained by the solution of the eigenvalue problem,(︀

𝐶 − 𝜆2𝛼𝐼
)︀
𝑁𝛼 = 0 (3.23)

where the Cauchy-Green deformation tensors eliminate the rigid body rotations of the deformation gradient and
serve as a quadratic change-of-length measure of the deformation.

𝐶 = 𝐹 𝑇𝐹

𝑏 = 𝐹𝐹 𝑇
(3.24)

The first partial derivative of the strain energy function w.r.t. a principal stretch

𝜓,𝛼 =
𝜕𝜓

𝜕𝜆𝛼
(3.25)

and the partial derivative of a principal stretch w.r.t. the right Cauchy-Green deformation tensor is defined

𝜕𝜆𝛼
𝜕𝐶

=
𝜕(𝜆2𝛼)

1/2

𝜕𝐶
=

1

2𝜆𝛼
𝑀𝛼 (3.26)

with the eigenbase as the dyadic (outer vector) product of eigenvectors.

𝑀𝛼 = 𝑁𝛼 ⊗𝑁𝛼 (3.27)

The second Piola-Kirchhoff stress tensor is formulated by the application of the chain rule and a sum of all
principal stretch contributions.

𝜕𝜓

𝜕𝐶
=
∑︁
𝛼

𝜕𝜓

𝜕𝜆𝛼

𝜕𝜆𝛼
𝜕𝐶

𝑆 = 2
𝜕𝜓

𝜕𝐶

(3.28)

Furthermore, the second partial derivatives of the elasticity tensor are carried out.

𝜕2𝜓

𝜕𝐶 𝜕𝐶
=
∑︁
𝛼

∑︁
𝛽

𝜕2𝜓

𝜕𝜆𝛼 𝜕𝜆𝛽

𝜕𝜆𝛼
𝜕𝐶

⊗ 𝜕𝜆𝛽
𝜕𝐶

+
∑︁
𝛼

∑︁
𝛽 ̸=𝛼

𝜕𝜓
𝜕𝜆2

𝛼
− 𝜕𝜓

𝜕𝜆2
𝛽

𝜆2𝛼 − 𝜆2𝛽
(𝑀𝛼 ⊙𝑀𝛽 +𝑀𝛽 ⊙𝑀𝛼)

(3.29)

15

Hyperelastic

C = 4
𝜕2𝜓

𝜕𝐶 𝜕𝐶
(3.30)

In case of repeated equal principal stretches, the rule of d’Hospital is applied.

lim
𝜆2
𝛽→𝜆2

𝛼

⎛⎝ 𝜕𝜓
𝜕𝜆2

𝛼
− 𝜕𝜓

𝜕𝜆2
𝛽

𝜆2𝛼 − 𝜆2𝛽

⎞⎠ =

(︃
− 𝜕2𝜓

𝜕𝜆2𝛼 𝜕𝜆
2
𝛽

+
𝜕2𝜓

𝜕𝜆2𝛽 𝜕𝜆
2
𝛽

)︃
(3.31)

gradient(C, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the right Cauchy-Green deformation
tensor (one half of the second Piola Kirchhoff stress tensor).

hessian(C, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the right Cauchy-Green
deformation tensor (a quarter of the Lagrangian fourth-order elasticity tensor associated to the second Piola-
Kirchhoff stress tensor).

16 Chapter 3. Frameworks

CHAPTER

FOUR

MODELS

class hyperelastic.models.invariants.ThirdOrderDeformation(C10=0, C01=0, C11=0, C20=0,
C30=0, strain=False)

Third Order Deformation isotropic hyperelastic material formulation based on the first and second invariant of
the right Cauchy-Green deformation tensor. The strain energy density per unit undeformed volume is given as a
sum of multivariate polynomials.

𝜓(𝐼1, 𝐼2) =

(𝑖+2𝑗)≤3∑︁
(𝑖+𝑗)≥1

𝐶𝑖𝑗 (𝐼1 − 3)𝑖(𝐼2 − 3)𝑗 (4.1)

The first partial derivatives of the strain energy density w.r.t. the invariants are given below.

𝜕𝜓

𝜕𝐼1
=
∑︁
𝑖≥1

𝐶𝑖𝑗 𝑖 (𝐼1 − 3)𝑖−1(𝐼2 − 3)𝑗

𝜕𝜓

𝜕𝐼2
=
∑︁
𝑗≥1

𝐶𝑖𝑗 (𝐼1 − 3)𝑖 𝑗 (𝐼2 − 3)𝑗−1

(4.2)

Furthermore, the second partial derivatives of the strain energy density w.r.t. the invariants are carried out.

𝜕2𝜓

𝜕𝐼1 𝜕𝐼1
=
∑︁
𝑖≥2

𝐶𝑖𝑗 𝑖 (𝑖− 1) (𝐼1 − 3)𝑖−2(𝐼2 − 3)𝑗

𝜕2𝜓

𝜕𝐼2 𝜕𝐼2
=
∑︁
𝑗≥2

𝐶𝑖𝑗 (𝐼1 − 3)𝑖 𝑗 (𝑗 − 1) (𝐼2 − 3)𝑗−2

𝜕2𝜓

𝜕𝐼1 𝜕𝐼2
=

∑︁
𝑖≥1,𝑗≥1

𝐶𝑖𝑗 𝑖 (𝐼1 − 3)𝑖−1 𝑗 (𝐼2 − 3)𝑗−1

(4.3)

gradient(I1, I2, I3, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the invariants.

hessian(I1, I2, I3, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the invariants.

class hyperelastic.models.invariants.TorchModel(fun, **kwargs)
Isotropic hyperelastic material formulation based on a given strain energy density function fun(I1, I2, I3,
**kwargs) per unit undeformed volume. The gradients are carried out by automatic differentiation using Py-
Torch.

𝜓 = 𝜓(𝐼1, 𝐼2, 𝐼3) (4.4)

17

Hyperelastic

Note: PyTorch uses single-precision by default. This must be considered in numeric simulations, i.e. the error
tolerance should not exceed np.sqrt(torch.finfo(torch.float).eps) (approx. tol=5e-4). For double-
precision, enable torch.float64 as default.

import torch

torch.set_default_dtype(torch.float64)

Examples

>>> import hyperelastic

>>> def yeoh(I1, I2, I3, C10, C20, C30):
>>> "Yeoh isotropic hyperelastic material formulation."
>>> return C10 * (I1 - 3) + C20 * (I1 - 3) ** 2 + C30 * (I1 - 3) ** 3

>>> model = hyperelastic.models.invariants.TorchModel(
>>> yeoh, C10=0.5, C20=-0.05, C30=0.02
>>>)
>>> framework = hyperelastic.InvariantsFramework(model)
>>> umat = hyperelastic.DistortionalSpace(framework)

gradient(I1, I2, I3, statevars, tensor=False, numpy=True, create_graph=False, retain_graph=False)
The gradient as the partial derivative of the strain energy function w.r.t. the invariants.

hessian(I1, I2, I3, statevars, numpy=True)
The hessian as the second partial derivatives of the strain energy function w.r.t. the invariants.

class hyperelastic.models.stretches.GeneralizedInvariantsModel(material, fun, **kwargs)
Generalized-invariants isotropic hyperelastic material formulation based on the principal stretches.

𝜓 = 𝜓 (𝐼1 (𝐸1, 𝐸2, 𝐸3) , 𝐼2 (𝐸1, 𝐸2, 𝐸3) , 𝐼3 (𝐸1, 𝐸2, 𝐸3)) (4.5)

The three principal invariants

𝐽1 = 𝐸1 + 𝐸2 + 𝐸3

𝐽2 = 𝐸1𝐸2 + 𝐸2𝐸3 + 𝐸1𝐸3

𝐽3 = 𝐸1𝐸2𝐸3

(4.6)

are formulated on a one-dimensional strain-stretch relation.

𝐸𝛼 = 𝑓(𝜆𝛼)

𝐸′
𝛼 = 𝑓 ′(𝜆𝛼) =

𝜕𝑓(𝜆𝛼)

𝜕𝜆𝛼

𝐸′′
𝛼 = 𝑓 ′′(𝜆𝛼) =

𝜕2𝑓(𝜆𝛼)

𝜕𝜆𝛼 𝜕𝜆𝛼

(4.7)

Depending on the strain-stretch relation, the invariants contain deformation- independent values.

𝐽1,0 = 𝐽1(𝐸𝛼(𝜆𝛼 = 1))

𝐽2,0 = 𝐽2(𝐸𝛼(𝜆𝛼 = 1))

𝐽3,0 = 𝐽3(𝐸𝛼(𝜆𝛼 = 1))

(4.8)

18 Chapter 4. Models

Hyperelastic

The deformation-dependent parts of the invariants are scaled by deformation- independent coefficients of nor-
malization. The deformation-independent parts are re-added after the scaling.

𝐼1 = 𝑐1(𝐽1 − 𝐽1,0) + 𝐽1,0

𝐼2 = 𝑐2(𝐽2 − 𝐽2,0) + 𝐽2,0

𝐼3 = 𝐽3

(4.9)

Note that the scaling is only applied to the first and second invariant, as the third invariant does not contribute to
the strain energy function at the undeformed state.

𝐸0 = 𝐸(𝜆 = 1)

𝐸′
0 = 𝐸′(𝜆 = 1)

𝐸′′
0 = 𝐸′′(𝜆 = 1)

(4.10)

The second partial derivative of the strain w.r.t. the stretch must be provided for a reference strain, e.g. the
Green-Lagrange strain measure (at the undeformed state).

𝐽 ′′
1,0 =

3

2
(𝐸′′

0 + 𝐸′
0)

𝐽 ′′
2,0 =

3

2

(︀
(2𝐸0(𝐸

′′
0 + 𝐸′

0))− 𝐸′2
0

)︀ (4.11)

𝑐1 =
𝐽 ′′
1,0,𝑟𝑒𝑓

𝐽 ′′
1,0

𝑐2 =
𝐽 ′′
2,0,𝑟𝑒𝑓

𝐽 ′′
2,0

(4.12)

The first partial derivatives of the strain energy function w.r.t. the invariants

𝜓,1 =
𝜕𝜓

𝜕𝐼1

𝜓,2 =
𝜕𝜓

𝜕𝐼2

𝜓,3 =
𝜕𝜓

𝜕𝐼3

(4.13)

and the partial derivatives of the invariants w.r.t. the principal stretches are defined. From here on, this is
consistent with any invariant-based hyperelastic material formulation, except for the factors of normalization.

𝜕𝐼1
𝜕𝐸𝛼

= 𝑐1

𝜕𝐼2
𝜕𝐸𝛼

= 𝑐2 (𝐸𝛽 + 𝐸𝛾)

𝜕𝐼3
𝜕𝐸𝛼

= 𝐸𝛽𝐸𝛾

(4.14)

The first partial derivatives of the strain energy density w.r.t. the principal stretches are required for the principal
values of the stress.

𝜕𝜓

𝜕𝜆𝛼
=
𝜕𝜓

𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

+
𝜕𝜓

𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

+
𝜕𝜓

𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐸𝛼
𝜕𝜆𝛼

(4.15)

Furthermore, the second partial derivatives of the strain energy density w.r.t. the principal stretches, necessary
for the principal components of the elastic tangent moduli, are carried out. This is done in two steps: first, the

19

Hyperelastic

second partial derivatives w.r.t. the principal strain components are carried out, followed by the projection to the
derivatives w.r.t. the principal stretches.

𝜕2𝜓

𝜕𝐸𝛼 𝜕𝐸𝛽
=

𝜕2𝜓

𝜕𝐼1 𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼2 𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼3 𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕2𝜓

𝜕𝐼1 𝜕𝐼2

(︂
𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

+
𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

)︂
+

𝜕2𝜓

𝜕𝐼2 𝜕𝐼3

(︂
𝜕𝐼2
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼2
𝜕𝐸𝛽

)︂
+

𝜕2𝜓

𝜕𝐼1 𝜕𝐼3

(︂
𝜕𝐼1
𝜕𝐸𝛼

𝜕𝐼3
𝜕𝐸𝛽

+
𝜕𝐼3
𝜕𝐸𝛼

𝜕𝐼1
𝜕𝐸𝛽

)︂
+
𝜕𝜓

𝜕𝐼1

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

+
𝜕𝜓

𝜕𝐼2

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

+
𝜕𝜓

𝜕𝐼3

𝜕2𝐼1
𝜕𝐸𝛼 𝜕𝐸𝛽

(4.16)

𝜕2𝜓

𝜕𝜆𝛼 𝜕𝜆𝛽
=
𝜕𝐸𝛼
𝜕𝜆𝛼

𝜕2𝜓

𝜕𝐸𝛼 𝜕𝐸𝛽

𝜕𝐸𝛽
𝜕𝜆𝛽

+

(︂
𝜕𝜓

𝜕𝐼1

𝜕𝐼1
𝜕𝐸𝛼

+
𝜕𝜓

𝜕𝐼2

𝜕𝐼2
𝜕𝐸𝛼

+
𝜕𝜓

𝜕𝐼3

𝜕𝐼3
𝜕𝐸𝛼

)︂
𝜕2𝐸𝛼
𝜕𝜆𝛼𝜕𝜆𝛼

(4.17)

gradient(stretches, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the principal stretches.

hessian(stretches, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the principal stretches.

class hyperelastic.models.stretches.Ogden(mu, alpha)
Ogden isotropic hyperelastic material formulation based on the principal stretches. The strain energy density per
unit undeformed volume is given as a sum of individual contributions from the principal stretches.

𝜓(𝜆𝛼) =
∑︁
𝛼

𝜓𝛼(𝜆𝛼)

𝜓𝛼(𝜆𝛼) =
2𝜇

𝑘2
(︀
𝜆𝑘𝛼 − 1

)︀ (4.18)

The first partial derivatives of the strain energy density w.r.t. the principal stretches are required for the principal
values of the stress.

𝜕𝜓

𝜕𝜆𝛼
=

2𝜇

𝑘
𝜆𝑘−1
𝛼 (4.19)

Furthermore, the second partial derivatives of the strain energy density w.r.t. the principal stretches, necessary
for the principal components of the elastic tangent moduli, are carried out.

𝜕2𝜓

𝜕𝜆𝛼 𝜕𝜆𝛼
=

2𝜇(𝑘 − 1)

𝑘
𝜆𝑘−2
𝛼 (4.20)

gradient(stretches, statevars)
The gradient as the partial derivative of the strain energy function w.r.t. the principal stretches.

hessian(stretches, statevars)
The hessian as the second partial derivatives of the strain energy function w.r.t. the principal stretches.

20 Chapter 4. Models

CHAPTER

FIVE

MATH

Warning: Shear terms are not doubled for strain-like tensors, instead all math operations take care of the reduced
vector storage.

Symmetric properties of dyadic products

The minor and major-symmetric property indicates whether the fourth-order tensor as a result of a dyadic product of
two symmetric second-order tensors may be transferred into a reduced matrix storage. Special cases of minor but not
major-symmetry and vice versa exist but are not shown here.

Function 𝐴 ̸= 𝐵 𝐴 = 𝐵

dya() ✓✓✓
cdya() ✓✓✓ ✓✓✓
cdya_ik()
cdya_il()

hyperelastic.math.astensor(A, mode=2)
Convert a three-dimensional tensor from symmetric (Voigt-notation) vector/matrix storage into full array-storage.

Parameters

• A (np.ndarray) – A three-dimensional second- or fourth-order tensor in reduced symmetric
(Voigt) vector/matrix storage.

• mode (int, optional) – The mode, 2 for second-order and 4 for fourth-order tensors (de-
fault is 2).

Returns
A three-dimensional second- or fourth-order tensor in full array-storage.

Return type
np.ndarray

21

Hyperelastic

Notes

This is the inverse operation of asvoigt().

For a symmetric 3x3 second-order tensor 𝐶𝑖𝑗 = 𝐶𝑗𝑖, the entries are re-created from a 6x1 vector.

𝐶 =
[︀
𝐶11 𝐶22 𝐶33 𝐶12 𝐶23 𝐶13

]︀𝑇 −→ 𝐶 =

⎡⎣𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

⎤⎦ (5.1)

For a (at least minor) symmetric 3x3x3x3 fourth-order tensor 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘 = 𝐴𝑗𝑖𝑙𝑘, the entries are
re-created from a 6x6 matrix.

A =

⎡⎢⎢⎣
𝐴1111 𝐴1122 𝐴1133 𝐴1112 𝐴1123 𝐴1113

𝐴2211 𝐴2222 𝐴2233 𝐴2212 𝐴2223 𝐴2213

.
𝐴1311 𝐴1322 𝐴1333 𝐴1312 𝐴1323 𝐴1313

⎤⎥⎥⎦

−→

⎡⎢⎢⎣
𝐴1111 𝐴1112 𝐴1113 𝐴1121 𝐴1122 𝐴1123 𝐴1131 𝐴1132 𝐴1133

𝐴1211 𝐴1212 𝐴1213 𝐴1221 𝐴1222 𝐴1223 𝐴1231 𝐴1232 𝐴1233

. .
𝐴3111 𝐴3112 𝐴3113 𝐴3121 𝐴3122 𝐴3123 𝐴3131 𝐴3132 𝐴3133

⎤⎥⎥⎦
(5.2)

Examples

>>> from hyperelastic.math import asvoigt, astensor
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> C6 = asvoigt(C, mode=2)
>>> D = astensor(C6, mode=2)
>>> np.allclose(C, D)
True

>>> D
array([[1. , 1.3, 1.5],

[1.3, 1.1, 1.4],
[1.5, 1.4, 1.2]])

>>> A = np.einsum("ij,kl", C, C)
>>> A66 = asvoigt(A, mode=4)
>>> B = astensor(A66, mode=4)
>>> np.allclose(A, B)
True

hyperelastic.math.asvoigt(A, mode=2)
Convert a three-dimensional tensor from full array-storage into reduced symmetric (Voigt-notation) vector/matrix
storage.

Parameters

• A (np.ndarray) – A three-dimensional second- or fourth-order tensor in full array-storage.

• mode (int, optional) – The mode, 2 for second-order and 4 for fourth-order tensors (de-
fault is 2).

22 Chapter 5. Math

Hyperelastic

Returns
A three-dimensional second- or fourth-order tensor in reduced symmetric (Voigt) vector/matrix
storage.

Return type
np.ndarray

Notes

This is the inverse operation of astensor().

For a symmetric 3x3 second-order tensor 𝐶𝑖𝑗 = 𝐶𝑗𝑖, the upper triangle entries are inserted into a 6x1 vector,
starting from the main diagonal, followed by the consecutive next upper diagonals.

𝐶 =

⎡⎣𝐶11 𝐶12 𝐶13

𝐶12 𝐶22 𝐶23

𝐶13 𝐶23 𝐶33

⎤⎦ −→ 𝐶 =
[︀
𝐶11 𝐶22 𝐶33 𝐶12 𝐶23 𝐶13

]︀𝑇 (5.3)

For a (at least minor) symmetric 3x3x3x3 fourth-order tensor 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘 = 𝐴𝑗𝑖𝑙𝑘, rearranged to
9x9, the upper triangle entries are inserted into a 6x6 matrix, starting from the main diagonal, followed by the
consecutive next upper diagonals.⎡⎢⎢⎣

𝐴1111 𝐴1112 𝐴1113 𝐴1121 𝐴1122 𝐴1123 𝐴1131 𝐴1132 𝐴1133

𝐴1211 𝐴1212 𝐴1213 𝐴1221 𝐴1222 𝐴1223 𝐴1231 𝐴1232 𝐴1233

. .
𝐴3111 𝐴3112 𝐴3113 𝐴3121 𝐴3122 𝐴3123 𝐴3131 𝐴3132 𝐴3133

⎤⎥⎥⎦

−→ A =

⎡⎢⎢⎣
𝐴1111 𝐴1122 𝐴1133 𝐴1112 𝐴1123 𝐴1113

𝐴2211 𝐴2222 𝐴2233 𝐴2212 𝐴2223 𝐴2213

.
𝐴1311 𝐴1322 𝐴1333 𝐴1312 𝐴1323 𝐴1313

⎤⎥⎥⎦
(5.4)

Examples

>>> from hyperelastic.math import asvoigt
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> asvoigt(C, mode=2)
array([1. , 1.1, 1.2, 1.3, 1.4, 1.5])

>>> A = np.einsum("ij,kl", C, C)
>>> asvoigt(A, mode=4)
array([[1. , 1.1 , 1.2 , 1.3 , 1.4 , 1.5],

[1.1 , 1.21, 1.32, 1.43, 1.54, 1.65],
[1.2 , 1.32, 1.44, 1.56, 1.68, 1.8],
[1.3 , 1.43, 1.56, 1.69, 1.82, 1.95],
[1.4 , 1.54, 1.68, 1.82, 1.96, 2.1],
[1.5 , 1.65, 1.8 , 1.95, 2.1 , 2.25]])

hyperelastic.math.cdya(A, B, out=None)
The full-symmetric crossed-dyadic product of two symmetric second-order tensors in reduced vector storage.

Parameters

23

Hyperelastic

• A (np.ndarray) – First symmetric second-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second-order tensor in reduced vector storage.

• out (np.ndarray or None, optional) – A location into which the result is stored. If
provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-
allocated array is returned (default is None).

Returns
Symmetric crossed-dyadic product in reduced matrix storage.

Return type
np.ndarray

Notes

The result of the symmetric crossed-dyadic product of two symmetric second order tensors is a minor- and
major-symmetric fourth-order tensor.

C =
1

2
(𝐴⊙𝐵 +𝐵 ⊙𝐴)

C =
1

4
(𝐴⊗𝐵 +𝐴⊗𝐵 +𝐵⊗𝐴+𝐵⊗𝐴)

C𝑖𝑗𝑘𝑙 =
1

4
(𝐴𝑖𝑘 𝐵𝑗𝑙 +𝐴𝑖𝑙 𝐵𝑘𝑗 +𝐵𝑖𝑘 𝐴𝑗𝑙 +𝐵𝑖𝑙 𝐴𝑘𝑗)

(5.5)

Note: The technical implementation is based on an answer of Jérôme Richard (see stackoverflow).

Examples

>>> from hyperelastic.math import asvoigt, astensor, cdya
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> D = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> CD = (np.einsum("ik,jl", C, D) + np.einsum("il,kj", C, D)) / 2
>>> DC = (np.einsum("ik,jl", D, C) + np.einsum("il,kj", D, C)) / 2

>>> A = (CD + DC) / 2

>>> C6 = asvoigt(C, mode=2)
>>> D6 = asvoigt(D, mode=2)
>>> cdya(C6, D6)
array([[1.2 , 1.82 , 2.25 , 1.48 , 2.025 , 1.65],

[1.82 , 1.21 , 1.82 , 1.485 , 1.485 , 1.825],
[2.25 , 1.82 , 1.2 , 2.025 , 1.48 , 1.65],
[1.48 , 1.485 , 2.025 , 1.515 , 1.7375, 1.7575],
[2.025 , 1.485 , 1.48 , 1.7375, 1.515 , 1.7575],
[1.65 , 1.825 , 1.65 , 1.7575, 1.7575, 1.735]])

24 Chapter 5. Math

https://stackoverflow.com/questions/76640596

Hyperelastic

>>> np.allclose(A, astensor(cdya(C6, D6), mode=4))
True

>>> np.allclose(A, astensor(cdya(D6, C6), mode=4))
True

hyperelastic.math.cdya_ik(A, B, out=None)
The overlined-dyadic product of two symmetric second-order tensors in reduced vector storage, where the inner
indices (the second index of the first tensor and the first index of the second tensor) are interchanged.

Parameters

• A (np.ndarray) – First symmetric second-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second-order tensor in reduced vector storage.

• out (np.ndarray or None, optional) – A location into which the result is stored. If
provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-
allocated array is returned (default is None).

Returns
Overlined-dyadic product in full-array storage.

Return type
np.ndarray

Notes

The result of the overlined-dyadic product of two symmetric second order tensors is a major- (but not minor-)
symmetric fourth-order tensor. This is also the case for 𝐴 = 𝐵.

C = 𝐴⊗𝐵

C𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘 𝐵𝑗𝑙
(5.6)

Examples

>>> from hyperelastic.math import asvoigt, cdya_ik
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> D = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> A = np.einsum("ik,jl", C, D)

>>> C6 = asvoigt(C, mode=2)
>>> D6 = asvoigt(D, mode=2)

>>> np.allclose(A, cdya_ik(C6, D6))
True

hyperelastic.math.cdya_il(A, B, out=None)
The underlined-dyadic product of two symmetric second-order tensors in reduced vector storage, where the right
indices of the two tensors are interchanged.

25

Hyperelastic

Parameters

• A (np.ndarray) – First symmetric second-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second-order tensor in reduced vector storage.

• out (np.ndarray or None, optional) – A location into which the result is stored. If
provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-
allocated array is returned (default is None).

Returns
Underlined-dyadic product in full-array storage.

Return type
np.ndarray

Notes

The result of the underlined-dyadic product of two symmetric second order tensors is a non-symmetric fourth-
order tensor. In case of 𝐴 = 𝐵, the fourth-order tensor is major-symmetric.

C = 𝐴⊗𝐵

C𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑙 𝐵𝑘𝑗
(5.7)

Examples

>>> from hyperelastic.math import asvoigt, cdya_il
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> D = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> A = np.einsum("il,kj", C, D)

>>> C6 = asvoigt(C, mode=2)
>>> D6 = asvoigt(D, mode=2)

>>> np.allclose(A, cdya_il(C6, D6))
True

hyperelastic.math.ddot(A, B, mode=(2, 2))
The double-dot product of two symmetric tensors in reduced vector storage, where the two innermost indices of
both tensors are contracted.

Parameters

• A (np.ndarray) – First symmetric second- or fourth-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second- or fourth-order tensor in reduced vector stor-
age.

• mode (2-tuple, optional) – The mode, 2 for second-order and 4 for fourth-order tensors
(default is (2, 2)).

Returns
Double-dot product of two symmetric tensors in scalar or reduced vector/matrix storage.

26 Chapter 5. Math

Hyperelastic

Return type
np.ndarray

Notes

𝐶 = 𝐴 : 𝐵

𝐶 = 𝐴𝑖𝑗 : 𝐵𝑖𝑗
(5.8)

𝐶 = 𝐴 : B
𝐶𝑘𝑙 = 𝐴𝑖𝑗 : B𝑖𝑗𝑘𝑙

(5.9)

𝐶 = B : 𝐴

𝐶𝑖𝑗 = B𝑖𝑗𝑘𝑙 : 𝐴𝑘𝑙
(5.10)

C = A : B
C𝑖𝑗𝑚𝑛 = A𝑖𝑗𝑘𝑙 : A𝑘𝑙𝑚𝑛

(5.11)

Examples

>>> from hyperelastic.math import asvoigt, ddot
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> A4 = np.einsum("ij,kl", A, B)
>>> B4 = (np.einsum("ik,jl", A, A) + np.einsum("il,kj", A, A)) / 2

>>> ddot(asvoigt(A), asvoigt(B), mode=(2, 2))
15.39

>>> ddot(asvoigt(A), asvoigt(B4, mode=4), mode=(2, 4))
array([18.899, 18.863, 21.698, 18.903, 20.253, 20.316])

>>> ddot(asvoigt(B4, mode=4), asvoigt(A), mode=(4, 2))
array([18.899, 18.863, 21.698, 18.903, 20.253, 20.316])

>>> ddot(asvoigt(A4, mode=4), asvoigt(B4, mode=4), mode=(4, 4))
array([[18.519 , 18.787 , 21.944 , 18.675 , 20.326 , 20.225],

[20.3709, 20.6657, 24.1384, 20.5425, 22.3586, 22.2475],
[22.2228, 22.5444, 26.3328, 22.41 , 24.3912, 24.27],
[24.0747, 24.4231, 28.5272, 24.2775, 26.4238, 26.2925],
[25.9266, 26.3018, 30.7216, 26.145 , 28.4564, 28.315],
[27.7785, 28.1805, 32.916 , 28.0125, 30.489 , 30.3375]])

27

Hyperelastic

hyperelastic.math.det(A)
The determinant of a symmetric second-order tensor in reduced vector storage.

Parameters
A (np.ndarray) – Symmetric second-order tensor in reduced vector storage.

Returns
Determinant of a symmetric second-order tensor in reduced vector storage.

Return type
np.ndarray

Examples

>>> from hyperelastic.math import asvoigt, det
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = asvoigt(A)

>>> det(B)
0.3169999999999993

>>> np.allclose(det(B), np.linalg.det(A))
True

hyperelastic.math.dev(A)
The deviatoric part of a three-dimensional second-order tensor.

Parameters
A (np.ndarray) – Symmetric second-order tensor in reduced vector storage.

Returns
Deviatoric part of the symmetric second-order tensor in reduced vector storage.

Return type
np.ndarray

Notes

dev(𝐶) = 𝐶 − tr(𝐶)

3
𝐼 (5.12)

hyperelastic.math.dot(A, B, mode=(2, 2))
The dot product of two symmetric second-order tensors in reduced vector storage, where the second index of the
first tensor and the first index of the second tensor are contracted.

Parameters

• A (np.ndarray) – First symmetric second-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second-order tensor in reduced vector storage.

• mode (2-tuple, optional) – The mode, 2 for second-order and 4 for fourth-order tensors
(default is (2, 2)).

28 Chapter 5. Math

Hyperelastic

Returns
Dot product of two symmetric second-order tensors in reduced vector storage.

Return type
np.ndarray

Notes

𝐶 = 𝐴𝐵

𝐶𝑖𝑗 = 𝐴𝑖𝑘𝐵𝑘𝑗
(5.13)

Examples

>>> from hyperelastic.math import asvoigt, dot
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> C = dot(asvoigt(A), asvoigt(B), mode=(2, 2))
>>> C
array([[5.27, 4.78, 4.69],

[5.2 , 4.85, 4.78],
[5.56, 5.2 , 5.27]])

>>> D = A @ B
>>> np.allclose(C, D)
True

hyperelastic.math.dya(A, B, out=None)
The dyadic product of two symmetric second-order tensors in reduced vector storage.

Parameters

• A (np.ndarray) – First symmetric second-order tensor in reduced vector storage.

• B (np.ndarray) – Second symmetric second-order tensor in reduced vector storage.

• out (np.ndarray or None, optional) – A location into which the result is stored. If
provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-
allocated array is returned (default is None).

Returns
Dyadic product in reduced matrix storage.

Return type
np.ndarray

29

Hyperelastic

Notes

The result of the dyadic product of two symmetric second order tensors is a minor- (but not major-) symmetric
fourth-order tensor. For the case of 𝐴 = 𝐵, the result is both major- and minor- symmetric.

C = 𝐴⊗𝐵

C𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗 𝐵𝑘𝑙
(5.14)

Examples

>>> from hyperelastic.math import asvoigt, astensor, dya
>>> import numpy as np

>>> C = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> D = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

>>> A = np.einsum("ij,kl", C, D)

>>> C6 = asvoigt(C, mode=2)
>>> D6 = asvoigt(D, mode=2)

>>> np.allclose(A, astensor(dya(C6, D6), mode=4))
True

hyperelastic.math.eigh(A, fun=None)
Eigenvalues and -bases of matrix A.

hyperelastic.math.eye(A=None)
A 3x3 tensor in Voigt-storage with ones on the diagonal and zeros elsewhere. The dimension is taken from the
input argument (a symmetric second-order tensor in reduced vector storage).

Parameters
A (np.ndarray or None, optional) – Symmetric second- or fourth-order tensor in reduced
vector storage (default is None).

Returns
Identity matrix in reduced vector storage.

Return type
np.ndarray

Notes

𝐼 =
[︀
1 1 1 0 0 0

]︀𝑇 (5.15)

30 Chapter 5. Math

Hyperelastic

Examples

>>> from hyperelastic.math import asvoigt, eye
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = asvoigt(A)
>>> eye(B)
array([1., 1., 1., 0., 0., 0.])

hyperelastic.math.inv(A, determinant=None, out=None)
The inverse of a symmetric second-order tensor in reduced vector storage.

Parameters

• A (np.ndarray) – Symmetric second-order tensor in reduced vector storage.

• determinant (np.ndarray or None, optional) – The determinant of the symmetric
second-order tensor (default is None).

• out (np.ndarray or None, optional) – A location into which the result is stored. If
provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-
allocated array is returned (default is None).

Returns
Inverse of a symmetric second-order tensor in reduced vector storage.

Return type
np.ndarray

Notes

𝐶𝐶−1 = 𝐼 (5.16)

Examples

>>> from hyperelastic.math import asvoigt, inv
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = asvoigt(A)

>>> inv(B)
array([-2.01892744, -3.31230284, -1.86119874, 1.70347003, 1.73501577, 0.5362776])

>>> np.allclose(dot(B, inv(B)), np.eye(3))
True

hyperelastic.math.trace(A)
The trace of a symmetric second-order tensor in reduced vector storage as the sum of the main diagonal.

Parameters
A (np.ndarray) – Symmetric second-order tensor in reduced vector storage.

31

Hyperelastic

Returns
Trace of a symmetric second-order tensor in reduced vector storage.

Return type
np.ndarray

Notes

tr (𝐶) = 𝐶 : 𝐼 = 𝐶11 + 𝐶22 + 𝐶33

𝐶𝑘𝑘 = 𝐶𝑖𝑗 : 𝛿𝑖𝑗
(5.17)

Examples

>>> from hyperelastic.math import asvoigt, trace
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)

>>> trA = trace(asvoigt(A))
>>> trA
3.3

>>> np.allclose(trA, np.trace(A))
True

hyperelastic.math.transpose(A)
The major-transpose of a symmetric fourth-order tensor in reduced vector storage.

Parameters
A (np.ndarray) – Symmetric fourth-order tensor in reduced vector storage.

Returns
Major-transpose of a symmetric fourth-order tensor in reduced vector storage.

Return type
np.ndarray

Notes

A𝑇𝑖𝑗𝑘𝑙 = A𝑘𝑙𝑖𝑗 (5.18)

Examples

>>> from hyperelastic.math import asvoigt, dya, transpose
>>> import numpy as np

>>> A = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2]).reshape(3, 3)
>>> B = np.array([1.0, 1.3, 1.5, 1.3, 1.1, 1.4, 1.5, 1.4, 1.2])[::-1].reshape(3, 3)

32 Chapter 5. Math

Hyperelastic

>>> C = dya(asvoigt(A), asvoigt(B))
>>> C
array([[1.2 , 1.1 , 1. , 1.4 , 1.3 , 1.5],

[1.32, 1.21, 1.1 , 1.54, 1.43, 1.65],
[1.44, 1.32, 1.2 , 1.68, 1.56, 1.8],
[1.56, 1.43, 1.3 , 1.82, 1.69, 1.95],
[1.68, 1.54, 1.4 , 1.96, 1.82, 2.1],
[1.8 , 1.65, 1.5 , 2.1 , 1.95, 2.25]])

>>> transpose(C)
array([[1.2 , 1.32, 1.44, 1.56, 1.68, 1.8],

[1.1 , 1.21, 1.32, 1.43, 1.54, 1.65],
[1. , 1.1 , 1.2 , 1.3 , 1.4 , 1.5],
[1.4 , 1.54, 1.68, 1.82, 1.96, 2.1],
[1.3 , 1.43, 1.56, 1.69, 1.82, 1.95],
[1.5 , 1.65, 1.8 , 1.95, 2.1 , 2.25]])

>>> D = astensor(C, mode=4)
>>> E = astensor(transpose(C), mode=4)
>>> np.allclose(D, np.einsum("klij", E))
True

hyperelastic.math.tril_from_triu(A, dim=6, out=None)
Copy upper triangle values to lower triangle values of a nxn tensor inplace.

hyperelastic.math.triu_from_tril(A, dim=6, out=None)
Copy lower triangle values to upper triangle values of a nxn tensor inplace.

33

Hyperelastic

34 Chapter 5. Math

CHAPTER

SIX

LAB

Define Experiments and Simulations in the Lab and perform a Curve-Fit to optimize material parameters.

Attention: This section is under construction .

class hyperelastic.lab.Biaxial(label=None)
Incompressible biaxial tension/compression load case.

𝐹 = diag
(︀[︀
𝜆 𝜆 1

𝜆2

]︀)︀
(6.1)

defgrad(stretch)
Return the Deformation Gradient tensor from given stretches.

stress(F, P, axis=0, traction_free=-1)
Normal force per undeformed area for a given deformation gradient of an incompressible deformation and
the first Piola-Kirchhoff stress tensor.

Parameters

• F (ndarray) – The deformation gradient.

• P (ndarray) – The first Piola-Kirchhoff stress tensor.

• axis (int, optional) – The primary axis where the longitudinal stretch is applied on
(default is 0).

• traction_free (int, optional) – The secondary axis where the traction-free trans-
verse stretch results from the constraint of incompressibility (default is -1).

Returns
The one-dimensional normal force per undeformed area.

Return type
ndarray

class hyperelastic.lab.Experiment(label, displacement, force, area=1.0, length=1.0, time=None,
temperature=None)

Results of an experiment along with methods to convert and plot the data.

label

The title of the experiment.

Type
str

35

Hyperelastic

displacement

The measured or applied displacement data.

Type
array_like

force

The measured or applied force data.

Type
array_like

area

The undeformed reference cross-sectional area used to evaluate the stress.

Type
float

length

The undeformed reference length used to evaluate the stretch.

Type
float

time

The timetrack of the measurement.

Type
array_like or None

temperature

The measured or applied temperature data.

Type
array_like or None

stretch

The stretch as the calculated ratio of the deformed vs. the undeformed length.

Type
array_like

plot_force_displacement(*args, xlabel='Displacement d', ylabel='Force F', ax=None, label=None,
**kwargs)

Create a force-displacement plot.

plot_stress_stretch(*args, ax=None, xlabel='Stretch l/L', ylabel='Force per undeformed area F/A',
label=None, **kwargs)

Create a stress-stretch plot.

stress()

Evaluate the stress as force per undeformed area.

class hyperelastic.lab.IncompressibleHomogeneousStretch

An incompressible homogeneous stretch load case with a longitudinal stretch and perpendicular transverse
stretches in principal directions. This class is intended to be subclassed by another class with a .defgrad() method
for the evaluation of the deformation gradient as utilized by the Uniaxial, Planar and Biaxial load cases.

36 Chapter 6. Lab

Hyperelastic

Notes

The Cauchy stress for an incompressible material is given by

𝜎 = 𝜎′ + 𝑝𝐼 (6.2)

where the Cauchy stress is converted to the first Piola-Kirchhoff stress tensor.

𝑃 = 𝐽𝜎𝐹−𝑇 (6.3)

The deformation gradient and its determinant are evaluated for the homogeneous incompressible deformation.

𝐹 = diag
(︀[︀
𝜆1 𝜆2 𝜆3

]︀)︀
𝐽 = 𝜆1𝜆2𝜆3 = 1

(6.4)

This enables the evaluation of the normal force per undeformed area, where quantities in the traction-free trans-
verse direction are denoted with a subscript (∙)𝑡.

𝑁

𝐴
= 𝑃 − 𝑃𝑡

𝜆𝑡
𝜆

(6.5)

stress(F, P, axis=0, traction_free=-1)
Normal force per undeformed area for a given deformation gradient of an incompressible deformation and
the first Piola-Kirchhoff stress tensor.

Parameters

• F (ndarray) – The deformation gradient.

• P (ndarray) – The first Piola-Kirchhoff stress tensor.

• axis (int, optional) – The primary axis where the longitudinal stretch is applied on
(default is 0).

• traction_free (int, optional) – The secondary axis where the traction-free trans-
verse stretch results from the constraint of incompressibility (default is -1).

Returns
The one-dimensional normal force per undeformed area.

Return type
ndarray

class hyperelastic.lab.Optimize(experiments, simulations, parameters, mask=None)
Take lists of experiments and simulations and find material parameters for the simulation model to obtain a best
possible representation of the experiments by the simulations.

experiments

A list of Experiment.

Type
list

simulations

A list of Simulation.

Type
list

37

Hyperelastic

parameters

The material parameters.

Type
array_like

mask

A list of masks to take the optimization-relevant data points.

Type
list of array_like

Examples

Three different test specimens are subjected to displacement-controlled uniaxial, planar and biaxial tension. The
applied displacement and reaction force data is used to create the Experiments. The test specimen for the
uniaxial load case has a cross-sectional area of 𝐴 = 25 mm2 and a length of 𝐿 = 100 mm.

>>> area = 25
>>> length = 100

Some synthetic experimental data is generated to demonstrate the capabilities of the optimization.

>>> import numpy as np

>>> displacement = np.linspace(0, 2 * length, 100)
>>> stretch = 1 + displacement / length
>>> force = (stretch - 1 / stretch ** 2 + (stretch - 1)**5 / 10) * area

With this reference experimental data at hand, the list of experiments is created. In this example, the displacement
and force data as well as the cross-sectional area are scaled from the synthetic uniaxial experimental data to the
other (synthetic) experiments.

>>> from hyperelastic import lab

>>> experiments = [
>>> lab.Experiment(
>>> label="Uniaxial Tension",
>>> displacement=displacement,
>>> force=force,
>>> area=area,
>>> length=length,
>>>),
>>> lab.Experiment(
>>> label="Planar Tension",
>>> displacement=displacement[::2],
>>> force=force[::2],
>>> area=area / (8 / 7),
>>> length=length,
>>>),
>>> lab.Experiment(
>>> label="Biaxial Tension",
>>> displacement=displacement[::2] / 2,
>>> force=force[::2],

(continues on next page)

38 Chapter 6. Lab

Hyperelastic

(continued from previous page)

>>> area=area / (4 / 5),
>>> length=length,
>>>),
>>>]

A function which takes the material parameters and returns the hyperelastic constitutive material formula-
tion has to be provided for the simulation objects. Here, we use an isotropic invariant-based third-order
deformation material formulation.

>>> def material(**kwargs):
>>> "A third-order deformation material formulation."
>>>
>>> tod = hyperelastic.models.invariants.ThirdOrderDeformation(**kwargs)
>>> framework = hyperelastic.InvariantsFramework(tod)
>>>
>>> return hyperelastic.DeformationSpace(framework)

The list of labels of the material parameters is used for all simulation objects.

>>> labels = ["C10", "C01", "C11", "C20", "C30"]

Next, the simulations for all three loadcases are created. It is important to take the stretches from the according
experiments.

>>> simulations = [
>>> lab.Simulation(
>>> loadcase=lab.Uniaxial(),
>>> stretch=experiments[0].stretch,
>>> material=material,
>>> labels=labels,
>>>),
>>> lab.Simulation(
>>> loadcase=lab.Planar(),
>>> stretch=experiments[1].stretch,
>>> material=material,
>>> labels=labels,
>>>),
>>> lab.Simulation(
>>> loadcase=lab.Biaxial(),
>>> stretch=experiments[2].stretch,
>>> material=material,
>>> labels=labels,
>>>),
>>>]

Both the list of experiments and the list of simulations are passed to Optimize, where its curve-fit method acts
as a simple wrapper for scipy.optimize.curve_fit. The initial material parameters are all set to one.

>>> optimize = lab.Optimize(
>>> experiments=experiments,
>>> simulations=simulations,
>>> parameters=np.ones(5),
>>>)

39

Hyperelastic

>>> parameters, pcov = optimize.curve_fit(method="lm")
>>> parameters
array([0.50430357, -0.01413309, 0.0141219 , -0.01641752, 0.00492179])

>>> fig, ax = optimize.plot(title="Third-Order Deformation")

curve_fit(*args, **kwargs)
Use non-linear least squares to fit a list of functions to a list of data.

init_curve_fit(*args, **kwargs)

mean_relative_std()

Return the relative mean of the standard deviations of the material parameters, normalized by the absolute
mean-values of the parameters.

norm_residuals()

Return the norm of the residuals.

plot(title=None)

class hyperelastic.lab.Planar(label=None)
Incompressible planar (shear) tension/compression load case.

𝐹 = diag
(︀[︀
𝜆 1 1

𝜆

]︀)︀
(6.6)

defgrad(stretch)
Return the Deformation Gradient tensor from given stretches.

40 Chapter 6. Lab

Hyperelastic

stress(F, P, axis=0, traction_free=-1)
Normal force per undeformed area for a given deformation gradient of an incompressible deformation and
the first Piola-Kirchhoff stress tensor.

Parameters

• F (ndarray) – The deformation gradient.

• P (ndarray) – The first Piola-Kirchhoff stress tensor.

• axis (int, optional) – The primary axis where the longitudinal stretch is applied on
(default is 0).

• traction_free (int, optional) – The secondary axis where the traction-free trans-
verse stretch results from the constraint of incompressibility (default is -1).

Returns
The one-dimensional normal force per undeformed area.

Return type
ndarray

class hyperelastic.lab.Simulation(loadcase, stretch, labels, material, parameters=None)
Results of a simulation along with methods to convert and plot the data.

loadcase

A class with methods for evaluating the deformation gradient and the stress as normal force per undeformed
area, e.g. Uniaxial.

Type
class

stretch

The stretch as the ratio of the deformed vs. the undeformed length.

Type
ndarray

labels

A list of the material parameter labels.

Type
list of str

material

A class with a method for evaluating the gradient of the strain energy function w.r.t. the deformation
gradient, e.g. DistortionalSpace.

Type
class

parameters

The material parameters.

Type
array_like

41

Hyperelastic

Examples

The material model response behaviour of a hyperelastic material model formulation is evaluated for a uniaxial
tension load case. A given stretch data is used to create the Simulation object.

>>> import numpy as np
>>> import hyperelastic
>>> from hyperelastic import lab
>>>
>>> stretch = np.linspace(0.7, 2.5, 181)

A function which takes the material parameters and returns the hyperelastic constitutive material formula-
tion has to be provided for the simulation objects. Here, we use an isotropic invariant-based third-order
deformation material formulation.

>>> def material(**kwargs):
>>> "A third-order deformation material formulation."
>>>
>>> tod = hyperelastic.models.invariants.ThirdOrderDeformation(**kwargs)
>>> framework = hyperelastic.InvariantsFramework(tod)
>>>
>>> return hyperelastic.DeformationSpace(framework)

A list of (string) labels is used to apply the list or array of parameter values to the material formulation.

>>> simulation = lab.Simulation(
>>> loadcase=lab.Uniaxial(),
>>> stretch=stretch,
>>> material=material,
>>> labels=["C10", "C01", "C11", "C20", "C30"],
>>> parameters=[0.4, 0.1, 0.02, -0.04, 0.01],
>>>)

The stress-stretch plot returns a figure which visualizes the force per undeformed area vs. the ratio of the unde-
formed and deformed length.

>>> fig, ax = simulation.plot_stress_stretch()
>>>
>>> ax.legend()
>>> ax.set_title("Third-Order Deformation")

42 Chapter 6. Lab

Hyperelastic

plot_force_displacement(*args, xlabel='Displacement d', ylabel='Force F', ax=None, label=None,
**kwargs)

Create a force-displacement plot.

plot_stress_stretch(*args, ax=None, xlabel='Stretch l/L', ylabel='Force per undeformed area F/A',
label=None, **kwargs)

Create a stress-stretch plot.

stress()

Evaluate the stress as force per undeformed area.

stress_curve_fit(x, *parameters)
Evaluate the stress as force per undeformed area for given material parameters.

class hyperelastic.lab.Uniaxial(label=None)
Incompressible uniaxial tension/compression load case.

𝐹 = diag
(︁[︁
𝜆 1√

𝜆
1√
𝜆

]︁)︁
(6.7)

defgrad(stretch)
Return the Deformation Gradient tensor from given stretches.

stress(F, P, axis=0, traction_free=-1)
Normal force per undeformed area for a given deformation gradient of an incompressible deformation and
the first Piola-Kirchhoff stress tensor.

Parameters

• F (ndarray) – The deformation gradient.

43

Hyperelastic

• P (ndarray) – The first Piola-Kirchhoff stress tensor.

• axis (int, optional) – The primary axis where the longitudinal stretch is applied on
(default is 0).

• traction_free (int, optional) – The secondary axis where the traction-free trans-
verse stretch results from the constraint of incompressibility (default is -1).

Returns
The one-dimensional normal force per undeformed area.

Return type
ndarray

44 Chapter 6. Lab

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

45

Hyperelastic

46 Chapter 7. Indices and Tables

PYTHON MODULE INDEX

h
hyperelastic.frameworks, 11
hyperelastic.math, 21
hyperelastic.models, 17
hyperelastic.models.invariants, 17
hyperelastic.models.stretches, 18
hyperelastic.spaces, 7

47

Hyperelastic

48 Python Module Index

INDEX

A
area (hyperelastic.lab.Experiment attribute), 36
astensor() (in module hyperelastic.math), 21
asvoigt() (in module hyperelastic.math), 22

B
Biaxial (class in hyperelastic.lab), 35

C
cdya() (in module hyperelastic.math), 23
cdya_ik() (in module hyperelastic.math), 25
cdya_il() (in module hyperelastic.math), 25
curve_fit() (hyperelastic.lab.Optimize method), 40

D
ddot() (in module hyperelastic.math), 26
defgrad() (hyperelastic.lab.Biaxial method), 35
defgrad() (hyperelastic.lab.Planar method), 40
defgrad() (hyperelastic.lab.Uniaxial method), 43
Deformation (class in hyperelastic.spaces), 7
det() (in module hyperelastic.math), 27
dev() (in module hyperelastic.math), 28
Dilatational (class in hyperelastic.spaces), 8
displacement (hyperelastic.lab.Experiment attribute),

35
Distortional (class in hyperelastic.spaces), 8
dot() (in module hyperelastic.math), 28
dya() (in module hyperelastic.math), 29

E
eigh() (in module hyperelastic.math), 30
Experiment (class in hyperelastic.lab), 35
experiments (hyperelastic.lab.Optimize attribute), 37
eye() (in module hyperelastic.math), 30

F
force (hyperelastic.lab.Experiment attribute), 36

G
GeneralizedInvariants (class in hyperelas-

tic.frameworks), 11

GeneralizedInvariantsModel (class in hyperelas-
tic.models.stretches), 18

gradient() (hyperelas-
tic.frameworks.GeneralizedInvariants method),
13

gradient() (hyperelastic.frameworks.Invariants
method), 14

gradient() (hyperelastic.frameworks.Stretches
method), 16

gradient() (hyperelas-
tic.models.invariants.ThirdOrderDeformation
method), 17

gradient() (hyperelas-
tic.models.invariants.TorchModel method),
18

gradient() (hyperelas-
tic.models.stretches.GeneralizedInvariantsModel
method), 20

gradient() (hyperelastic.models.stretches.Ogden
method), 20

gradient() (hyperelastic.spaces.Deformation method),
8

gradient() (hyperelastic.spaces.Dilatational method),
8

gradient() (hyperelastic.spaces.Distortional method),
9

H
hessian() (hyperelas-

tic.frameworks.GeneralizedInvariants method),
13

hessian() (hyperelastic.frameworks.Invariants
method), 14

hessian() (hyperelastic.frameworks.Stretches method),
16

hessian() (hyperelas-
tic.models.invariants.ThirdOrderDeformation
method), 17

hessian() (hyperelastic.models.invariants.TorchModel
method), 18

hessian() (hyperelas-
tic.models.stretches.GeneralizedInvariantsModel

49

Hyperelastic

method), 20
hessian() (hyperelastic.models.stretches.Ogden

method), 20
hessian() (hyperelastic.spaces.Deformation method), 8
hessian() (hyperelastic.spaces.Dilatational method), 8
hessian() (hyperelastic.spaces.Distortional method),

10
hyperelastic.frameworks

module, 11
hyperelastic.lab
module, 35

hyperelastic.math
module, 21

hyperelastic.models
module, 17

hyperelastic.models.invariants
module, 17

hyperelastic.models.stretches
module, 18

hyperelastic.spaces
module, 7

I
IncompressibleHomogeneousStretch (class in hyper-

elastic.lab), 36
init_curve_fit() (hyperelastic.lab.Optimize method),

40
inv() (in module hyperelastic.math), 31
Invariants (class in hyperelastic.frameworks), 13

L
label (hyperelastic.lab.Experiment attribute), 35
labels (hyperelastic.lab.Simulation attribute), 41
length (hyperelastic.lab.Experiment attribute), 36
loadcase (hyperelastic.lab.Simulation attribute), 41

M
mask (hyperelastic.lab.Optimize attribute), 38
material (hyperelastic.lab.Simulation attribute), 41
mean_relative_std() (hyperelastic.lab.Optimize

method), 40
module
hyperelastic.frameworks, 11
hyperelastic.lab, 35
hyperelastic.math, 21
hyperelastic.models, 17
hyperelastic.models.invariants, 17
hyperelastic.models.stretches, 18
hyperelastic.spaces, 7

N
norm_residuals() (hyperelastic.lab.Optimize method),

40

O
Ogden (class in hyperelastic.models.stretches), 20
Optimize (class in hyperelastic.lab), 37

P
parameters (hyperelastic.lab.Optimize attribute), 37
parameters (hyperelastic.lab.Simulation attribute), 41
piola() (hyperelastic.spaces.Deformation method), 8
piola() (hyperelastic.spaces.Dilatational method), 8
piola() (hyperelastic.spaces.Distortional method), 10
Planar (class in hyperelastic.lab), 40
plot() (hyperelastic.lab.Optimize method), 40
plot_force_displacement() (hyperelas-

tic.lab.Experiment method), 36
plot_force_displacement() (hyperelas-

tic.lab.Simulation method), 43
plot_stress_stretch() (hyperelastic.lab.Experiment

method), 36
plot_stress_stretch() (hyperelastic.lab.Simulation

method), 43

S
Simulation (class in hyperelastic.lab), 41
simulations (hyperelastic.lab.Optimize attribute), 37
stress() (hyperelastic.lab.Biaxial method), 35
stress() (hyperelastic.lab.Experiment method), 36
stress() (hyperelastic.lab.IncompressibleHomogeneousStretch

method), 37
stress() (hyperelastic.lab.Planar method), 40
stress() (hyperelastic.lab.Simulation method), 43
stress() (hyperelastic.lab.Uniaxial method), 43
stress_curve_fit() (hyperelastic.lab.Simulation

method), 43
stretch (hyperelastic.lab.Experiment attribute), 36
stretch (hyperelastic.lab.Simulation attribute), 41
Stretches (class in hyperelastic.frameworks), 15

T
temperature (hyperelastic.lab.Experiment attribute), 36
ThirdOrderDeformation (class in hyperelas-

tic.models.invariants), 17
time (hyperelastic.lab.Experiment attribute), 36
TorchModel (class in hyperelastic.models.invariants), 17
trace() (in module hyperelastic.math), 31
transpose() (in module hyperelastic.math), 32
tril_from_triu() (in module hyperelastic.math), 33
triu_from_tril() (in module hyperelastic.math), 33

U
Uniaxial (class in hyperelastic.lab), 43

50 Index

	Tutorials
	Getting Started
	Available material formulations
	Invariant-based material formulations
	Principal stretch-based material formulations
	Lab

	Spaces
	Frameworks
	Models
	Math
	Lab
	Indices and Tables
	Python Module Index
	Index

